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Conservation Form of the Equations of Hydrodynamics 
in Curvilinear Coordinate System9 

JAMES L. ANDERSON,~ STANLEY PREISER,~ AND EPHRAIM L. RUBIN~ 

ABSTRACT 

In this paper we show how to transform the equations of hydrodynamics so that 
conservation form is retained in any curvilinear coordinate system. 

I. INTRODUCTION 

In this paper we shall consider the hydrodynamic equations for perfect fluids 
in the absence of external and dissipative forces. These equations in integral form 
may be given as follows: 

s I v(t) g + div(pu)/ dv = 0, 

s I 
a(Pu) 

v(t) 
- + div(puu + PI),/ dv = 0, at 

s I u(t) 2 + div[u(E + p)l/ du = 0, 

where p, u, E, and p are the density, velocity, total energy per unit volume, and 
pressure, respectively. I is the identity tensor and v(t) is the time-dependent 
material volume. 

For continuous integrands the integral equations are equivalent to the following 
differential equations: 

aw 

g + div(pu) = 0, 

at + div(puu) + grad p = 0, 

z + div[u(E + p)] = 0. 

1 This research was conducted under the sponsorship of the Office of Naval Research under 
Contract No. Nonr 839(34), Project No. NR 061-135. 
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In the presence of discontinuities the Rankine-Hugoniot relations which are 
embedded in the integral formulation need to be appended to the differential 
equations. For example, in the method of characteristics the shock is considered 
to be an internal moving boundary. The hydrodynamic equations are integrated 
up to one side of the discontinuity at which point the Rankine-Hugoniot equations 
are used to find the conditions on the other side. The characteristic equations 
may then be used again for the remaining smooth part of the flow. One of the 
difficulties of this method is that the motion of the discontinuity is not known in 
advance but is governed by the differential equations and the boundary conditions 
themselves, i.e., the Rankine-Hugoniot relations. 

In a series of papers beginning in 1954 Lax [I] introduced a method for the 
numerical differencing of Eqs. (3). A consequence of this numerical technique is 
that it automatically satisfies the Rankine-Hugoniot conditions. In applying the 
Lax method it is desirable that Eqs. (2) be in what we call here conservation form4 

W,t + f T,T = 0. (3) 

Equations (2) are automatically in conservation form when Cartesian coordinates 
are employed. However, in general, they will not be in this form: when other than 
Cartesian coordinates are employed undifferentiated terms appear and the form 
(3) is lost. In particular, the conservation of linear momentum contains the diver- 
gence of a tensor and it is this term which leads to the appearance of Christoffel 
symbols of the second kind. Terms of this type, i.e., the centrifugal and coriolis 
forces arise because of the curvature of the coordinate system. Calculations have 
been performed by one of us (ELR, Ref. [Z]) for the flow around a blunt body 
using cylindrical and polar coordinates. The equations were written with the 
Christoffel symbols appearing explicitly. 

The purpose of this paper is to transform the equations of hydrodynamics so 
that the form of Eqs. (3) is retained in any curvilinear coordinate system. 

II. MATHEMATICAL PRELIMINARIES [3] 

Let us consider a field yA(x) defined over a spatial manifold A8 and a mapping 
of J& on to itself which maps the point xc on to the point x’r where 

x’ -+ x” = X”(X). 

4 In this and following equations latin indices take on the values 1, 2, 3. The Einstein 
summation convention and the comma notion for differentiation are employed. Thus 
f',? = apjaxl + afyax= + apja.9. 
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The functions x”(x) characterize the particular mapping in question. For an infini- 
tesimal mapping, 

xr -+ X’? = XT + ‘p(x) 

where the P(X) are infinitesimal functions of the x7. Under a mapping the field 
yA(x) gets transformed according to 

YAW - YW) 

where, for the fields we have to consider, y’Jx’) is a linear homogeneous function 
of the yR(x). For an infinitesimal mapping, 

YAW - YXX’> = YAW + Q/l(X), 

where the exact form of QYA(x) depends on the type of field considered. In Table 
I we have listed the forms of QA(x) for the types of fields we will encounter in 
this work. 

TABLE I 

field 8 (field) 

scalar, ‘p 69, = 0 

contravector, hr 6h’ = h’e,, 

cove&or, k, Sk, = -k,s’,, 

cotensor, I,# Slm = -Crl’,. - ltz,, 

In order to characterize the properties of a given tensor field it is necessary to 
compare its components at a given point of the spatial manifold before and after 
a mapping. For an infinitesimal mapping this difference, which we designate by 
8yA(x), is given by 

where we have expanded v;(x) about x’ and have retained only small quantities 
of the first order. This latter assumption allows us to drop the prime in the y;,,p 
term. 

If 8yA(x) = 0 for a given mapping we say that the mapping is a symmetry of 
y,,(x). Of particular importance to us here are the symmetries of flat metric g,, 
of Newtonian space. These symmetries are common to all Newtonian systems and 
lead to the conservation of linear and angular momentum for these systems. 
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(Conservation of energy is likewise associated with the time translational symmetry 
of Newtonian systems.) We will see in the next section that, given the form of the 
e that correspond to the symmetries of g,, in an arbitrary coordinate system we 
can formulate equations of motion in conservation form in that system. 

The condition that 8gg,, = 0 is 

h%s = -&L?..s - &SC?., - &%UP. 

If we introduce the covector 5, = g,.,.$, we can rewrite Eq. (4) in the form 

5cs + fs:, = 0 

where the semicolon denotes covariant differentiation, i.e., 

(4) 

(5) 

with the Christoffel symbol {l. U ,} given by 

Equation (5) is known as Killing’s equation and any vector &. that satisfies it as a 
Killing vector [4]. 

III. TRANSFORMATION OF EQUATIONS~ 

The existence of equations that govern the behavior of a continuum system in 
conservation form is a consequence of the underlying symmetries of the system. 
It is well-known that, corresponding to each such symmetry, there exists a constant 
of the motion which for a continuum system will be of the form C = JwdV 
where w  is a scalar density. Since dC/dt = 0, it follows that awlat must differ from 
zero by at most a divergence: 

awpt + f’,, = 0. 

For each symmetry we can therefore expect a conservation law of the form (3). A 
rigorous proof of these assertions is to be found in Noether’s theorem. The essential 
point for us is that the symmetries of a physical system are intrinsic to it and do not 

5 The main result of this section has been proved in another way by A. Lapidus in his doctoral 
dissertation [5]. 
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depend on the existence of any particular choice of coordinate system. It follows 
therefore that, since the equations of hydrodynamics are in the form (3) in a 
Cartesian coordinate system, it must be possible to express them in this form in 
an arbitrary coordinate system. In this section we shall express Eqs. (2) in conserva- 
tion form for arbitrary curvilinear coordinate systems 

The conservation of mass and energy in Cartesian coordinates may be expressed 
in the following form: 

W,t + Y,T = 0. 

In curvilinear cordinates, partial differentiation is replaced by covariant 
differentiation. 

wt + f:r = 0 

Equation (6) is no longer of the form (3). However, if we multiply Eq. (6) by 
g1/2, where g is the determinant of g,, and take account of the fact that g:,, = 0, 
we arrive at the desired form: 

(g1’2w),, + (g”“f’>., = 0. (7) 

It is important to recognize that the f are the tensor components and not the 
physical components. A clear discussion of this distinction is given in Truesdell’s 
article [6]. 

Let us now consider the equations expressing the conservation of linear 
momentum. In Cartesian coordinates these equations have the form 

WT,t + f’“,s = 0 (8) 

where f’” = f”‘. Again, in curvilinear coordinates, ordinary differentiation gets 
replaced by covariant differentiation and we have 

WT,t + frsis = 0. (9) 

If we multiply this equation by g lj2 times a vector .$,. and sum over r, the linear 
momentum equation has the form (3) if and only if 

L;s + fs:r = 0. (10) 

For vectors that satisfy (10) we have 

W25,w’),, + k”“&f9,s = 0. (11) 

In the case of a flat three-dimensional metric, Killing’s equation admits six 
independent solutions corresponding to three translations and three rotations. 
For perfect fluids it can be shown that the conservation of angular momentum 
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is a consequence of Eqs. (1) and the three rotational Killing vectors may be 
ignored [7]. In Appendix A we give the form of the translational Killing vectors and 
the hydrodynamic equations in cylindrical and spherical coordinates. 

It is possible to rewrite Eqs. (11) in a form that agrees with those of Lapidus. 
Let $) be the three orthogonal Killing vectors corresponding to translations. 
If we define 

$ = pg;owr 

and 
fii = &/2g;d)g;5)ps, 

then Eq. (11) can be put into the form 

where 51;) is the reciprocal matrix to g, . (‘I Equations (12) are the Lapidus equations. 
It follows from the form of the Killing vectors in Cartesian coordinates that 3 
and fii are the Cartesian components of these quantities as functions of the 
curvilinear coordinates. 

APPENDIX Al. CYLINDRICAL COORDINATES (r, 8, z) 

The three translational Killing vectors in Cartesian coordinates are 

41 = (LO, 01, 

g2 = (0, 1, 01, 

t2 = (0, 0, 0 

The form of these vectors in curvilinear coordinates may be found by transforming 
these Cartesian vectors. Listed below are the appropriate Killing vectors for 
cylindrical coordinates. 

El = (cos 6, -r sin 8, 0) 

ga = (sin ~9, r cos 8, 0) 

63 = to, 0, 1). 

The f and f* are given as 

f’ = &1,* ’ f2= &9 f” = t&i:;l~a ’ 
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where u’, ue, and uz are the physical components of velocity. 

where 

The equation of continuity is 

The equations of motion are: 

r component: 

{rp(zFcos 13 - 28 sine)}, + {rcos &w'u7 +p) - rpuW sin e}, 

+ {puW cos 8 - sin e@uw + p)}e + {rpu’irz cos e - rpueuz sin e)}, = 0; 

e component: 

{rp(u' sin 8 + ue cos e)}, + {r sin e(pu+ur + p) + rpfue cos ej, 

+ {puV sin e + cos e(puw + P)}e + {rpucuz sin e + rpueuz cos ej, = 0; 

2 component: 

{vu% + {rpuW, + {~u~u?~ + {r(PuW + p)}, = 0. 

The energy equation is 

y is the ratio of specific heats. 
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APPENDIX A2. SPHERICAL COORDINATES (r, 0, v) 

The Killing vectors in spherical coordinates are 

f1 = (sin e cos F, r cos 13 cos F, -r sin 19 sin v), 
5, = (sin e sin v, r cos e sin q3, r sin e cos v), 

& = (cos 8, -r sin e, 0). 

The f’ and f’” are given by 

f’ = (g;;l,2 ’ f” = -!c- 
(gz2)1’2 ’ f3=&. 

,tP 
f'" = (g,,;iy;,,)lia + (g,,)l/2(gss)l/2 ' 

where 

10 0 
grs = ( 0 r2 0 . 

0 0 r2 sin2 e 
1 

The equation of continuity is 

{r2p sin e}, + {r2pUr sin ej, + {rpus sin ej, + {rpu~}, = 0. 

The equations of motion are: 
r component: 

{r2 sin ebd sin e cos v + ~2.8 cos e cos q - puq sin F]}~ 

+ {r2 sin &in e cos &x4rur + p) + p24W cos e cos v - pr.454~ sin v]}, 

+ (r sin ebuv sin e cos y + cos e cos &~%4~ + p) - pusu~ sin e sin lJJ]}e 

+ {r sin e[pUw cos v + p24W cot e cos F - cosec e sin c&~~u+J + p)}, = 0; 

e component: 

{r2 sin e[pd sin e sin v + pue cos e sin v + ~24” cos T]}~ 

+ {r2 sin @sin 19 sin &x.4%~ + p) + pu+ue cos e sin y + pu%~ cos y]}, 

+ (r sin e[puw sin e sin p, + cos e sin &3ueue + p) + ~24~~” cos F]}e 
+ {r sin e[puw sin q + puW cot e sin F + cosec 0 cos &uW + p)]}, = 0; 
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g, component: 

(r2 sin B[pu’ cos 0 - pue sin e]}, + {r” sin ~[COS e(pubr + p) - pu’ue sin e]}, 
+ {r sin e[pu98 cos e - sin e(puw + P)]>~ 

+ {r sin e[pUbq cot e - pu%~]}, = 0. 

The energy equation is 

{FE sin e}, + /r2 sin e [y24lE - (7 - 1) 5 (u%?P + uWu~ + uWw)]I~ 

+I [ 
r sin e yueE - (y - 1) $Yj (24~~94~ + ueueue + ueu+w)]~ 

e 

yu"E - (y - 1) 5 (u’WW + ueueu~ + UWW’) 
II 

= 0. 
‘p 
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